
JobBox Documentation
Release 0.1

Zygmunt Krynicki

March 04, 2013





CONTENTS

i



ii



JobBox Documentation, Release 0.1

JobBox is a collection of tests that aim to cover all aspects of modern computer hardware. It is intended to be used
alongside with CheckBox and PlainBox projects as a source of actual data.

The name JobBox is a wordplay that matches the naming scheme of the CheckBox project group. The job part refers
to CheckBox jobs which represent the smallest piece of testing that can be performed. In essence, JobBox is just a
box with jobs.

CONTENTS 1



JobBox Documentation, Release 0.1

2 CONTENTS



CHAPTER

ONE

INSTALLATION

JobBox can be installed from a PPA (Personal Package Archive) (recommended) or PYPI (python package index) on
Ubuntu Precise (12.04) or newer.

$ sudo add-apt-repository ppa:checkbox-dev/ppa && sudo apt-get update && sudo apt-get install jobbox

3



JobBox Documentation, Release 0.1

4 Chapter 1. Installation



CHAPTER

TWO

USING JOBBOX

JobBox is a dependency of PlainBox and CheckBox. It will be used automatically whenever those tools are used.

5



JobBox Documentation, Release 0.1

6 Chapter 2. Using JobBox



CHAPTER

THREE

TABLE OF CONTENTS

3.1 Job Specification

3.1.1 CheckBox Job Definition

3.1.2 JobBox Job Definition

JobBox jobs are a proposed evolution of CheckBox jobs. The intent is to retain compatibility with existing jobs,
provide simple migration path and to address the shortcomings of existing CheckBox job definition system.

JobBox jobs are defined as a structure with key (field) - value pairs. The following fields are defined by this document.
They are typically stored just as CheckBox jobs, in RFC-822 records.

name

Unique job name, same as in CheckBox.

This field is used to identify and refer to each job. The name has to be unique. This can be simplified by using vendor
name spaces.

vendor-namespace

Implicit prefix of the job name.

This field has no corresponding representation in CheckBox.

The intent is to allow for an ecosystem of job provides to freely collaborate in one environment without the fear of
name collisions.

This mechanism allows each job vendor to ensure that the key requirement of job name to be globally unique is easy
to enforce.

Implicitly all jobs inherit a vendor namespace from the document that defines them. This allows the cumbersome
vendor string to be mostly forgotten about in normal development or usage.

The syntax is of the vendor namespace string MUST follow the pattern
year:reverse-domain-name:namespace where year is a non-abbreviated year,
reverse-domain-name is a name of a domain controlled by the vendor written down in the reverse do-
main name notation while namespace is an arbitrary string assigned by the vendor. Vendors MUST control the
DNS domain name at the time the vendor namespace is being defined. The year component allows the system to
meaningfully refer to the reverse-domain-name while ensuring that the eternal ownership of a DNS domain
name is not a prerequisite.

7



JobBox Documentation, Release 0.1

Note: For the Canonical Hardware Certification Team, the vendor namespace is
2013:com.canonical:pes/hardware-certification

classifiers

List of classifiers. See classifiers.

This allows scenario editors and testers to pick tests applicable to a particular class of software or hardware. Classifiers
allow job developers to associate a set of hierarchical labels to each job.

This is a replacement of the implicit category association informally defined by the job name (which typically follows
a category/name pattern) and the equally informal abuse of local plugin jobs to use __category__ jobs to put
generated jobs into some category.

The improvement over the base idea is that a job may naturally belong to multiple categories, such as be-
ing a hardware:monitor, functionality:suspend test that is typically performed on target-environment:desktop and
target-environment:laptop as well as target-environment:smart-screen and belonging to the general category:power-
management. This was impossible to express in the previous system and while no concrete usage patterns are recom-
mended it believed that introduction of this capability will result in definition of official classifiers and usage patterns
in which they are applied.

summary

Human-readable, short, one line summary of the job.

This field is intended for scenario developers that wish to assemble a scenario out of the library of available test.
Keeping the summary short and one-line will allow efficient representation of tests as a list of items. The summary
may be more descriptive than the raw job name might otherwise be.

description

Human-readable description of arbitrary size.

This field is always displayed to the test operator. It may contain instructions vital for the proper verification of the
outcome of the test.

Note: Perhaps we want to split the description (which is something we could display on websites and scenario editors)
from actual instructions for the test operator.

startup

Keyword identifying how a test job is started.

The default value is immediate.

The allowed values are:

immediate The job can be started immediately.

triggered The job needs to be started explicitly by the test operator. This is intended for things that may be
timing-sensitive or may require the tester to understand the necessary manipulations that he or she may have to
perform ahead of time.

8 Chapter 3. Table of contents



JobBox Documentation, Release 0.1

The test operator may select to skip certain tests, in that case the outcome is skip.

This is a replacement for a collection of CheckBox plugin types, including manual, shell, user-verify and
user-interact.

verification

Keyword identifying how a test job is qualified as passing or failing.

The default value is automatic.

The allowed values are:

automatic The outcome is automatically verified based on the return status of the command or script embedded
into the job. Depending on the return code the outcome of a job is either pass or fail

manual The outcome is manually verified by asking a question to the user. Typically this question is a form of
yes-or-no question. Depending on the input from the test operator the outcome of a job is either pass or fail.

script

A bash script to execute.

There is no default value.

The script can be a multi-line command that is executed as a part of this job on job startup. The script can be as long
as desired but it is suggested to keep it reasonably short and transform overly complicated scripts to actual standalone
programs so that they can be treated as every other piece of software.

The output and return code of the script may affect the rest of the system. See the script-output and
verification fields.

script-output

A keyword identifying what to do with the output produced by the script.

The default value is hide.

The allowed values are:

hide Both stdout and stderr are hidden from the tester.

The test operator may choose to reveal the output and inspect it if needed. The output is not stored after all
testing is finished.

This is a replacement for CheckBox shell plugin.

The improvement over the base idea is that not all commands produce interesting output that should be imme-
diately displayed. Except for jobs that require the test operator to carefully read the output this provides a good
default value without compromising on the ability to access this data in all cases, if required.

reveal Both stdout and stderr are displayed to the tester.

The test operator may choose to hide the output. The output is not stored after all testing is finished.

This is a replacement for CheckBox shell plugin.

The improvement over the base idea is that it allows to identify jobs that depend on the test operator being able
to see their output. Such scripts may be subject to extra scrutiny or localization requirements to ensure testers
can comprehend the output if that is required by the test.

3.1. Job Specification 9



JobBox Documentation, Release 0.1

attach-text The stdout is converted to a text attachment.

All of the bytes produced on stdout must form a valid Unicode string encoded with UTF-8. Any characters that
cannot be interpreted as UTF-8 are replaced with supplementary characters.

The stderr is discarded.

This is a replacement for CheckBox attachment plugin.

The improvement over the base idea is that we clearly differentiate text and binary attachments and there is a
well-defined strategy for handling corrupted output.

attach-binary The stdout is converted to a binary attachment.

The stderr is discarded.

When using attach-binary you MUST also set the attachment-mime-type field.

This is a replacement for CheckBox attachment plugin.

The improvement over the base idea is that we clearly differentiate text and binary attachments and there is
a way to specify MIME type which may aid test reviewers and downstream storage systems. For example a
web-based test result browser may offer to download or display attachments in a way optimized to their content.

parse-resource The stdout is converted to text as described in attach-text and parsed as list of RFC-822
records separated by an empty line. The result is interpreted as a list of resource definitions.

The stderr is discarded.

This is a replacement for CheckBox resource plugin.

parse-job The stdout is converted to text as described in attach-text and parsed as a list of RFC-822 records
separated by an empty line. The result is interpreted as a list of job definitions.

The stderr is discarded.

When using parse-job you MUST define parse-job-pattern to indicate the naming pattern of jobs
that MAY be generated by the script. Jobs that are parsed but do not match that pattern are discarded.

This is a replacement for CheckBox local plugin.

The improvement over the base idea is that it allows PlainBox to build a full graph of all jobs and automatically
discover job dependencies without executing any code.

parse-job-pattern

The pattern of jobs that may be defined by this job.

There is no default value.

This field describes the pattern of jobs names that may be defined by a job using script-output equal to
parse-job.

The pattern MUST be a valid job name and MUST NOT have a vendor-namespace (in that it can only generate
jobs in the same vendor namespace as the job definition that embeds the script). This ensures that no cross-vendor
job generation is possible and in turn that each vendor can enforce and control their namespace.

The pattern SHOULD include at least one wildcard. The syntax of the wildcard is {NAME} where NAME is the
name of the wildcard.

Note: A job that generates arbitrary jobs using a match-everything pattern such as {} will be rejected in practice. For
details see the rules on pattern job collisions. The rule states that if two jobs contend to generate the same job then the

10 Chapter 3. Table of contents



JobBox Documentation, Release 0.1

shortest pattern (not including the name of each wildcard) is discarded. This allows to resolve conflicts by allowing
most-specialized pattern to win.

attachment-mime-type

The MIME type of attachment generated by this job.

There is no default value.

This field is mandatory to jobs that have script-output equal to attach-binary.

user

Name of the system user the script should be executed as.

There is no default value.

This is typically used to run certain scripts as root.

depends

A list of job names that describe test-level dependencies of the job.

There is no default value.

The list of dependencies must refer to existing jobs from the same vendor or fully qualified jobs from any vendor. The
job is ready when ALL the term:outcome of all referenced jobs is pass.

The list MAY refer to a job generated by a job using script-output equal to parse-job. Jobs with unknown
dependencies (not defined anywhere in the system) are removed from consideration. Jobs that have circular depen-
dencies are also removed from consideration.

When the dependency is not met the outcome of a job is fail

requires

A list of requirement programs that describe system-level dependencies of the job.

There is no default value.

The list of dependencies is evaluated against all resources. The job is ready when ALL resource programs evaluate to
true.

When the dependency is not met the outcome of a job is not-supported

3.2 Job Coverage

This document summarizes job / test coverage as provided by JobBox

3.2. Job Coverage 11



JobBox Documentation, Release 0.1

3.2.1 Hardware Jobs

Category Name Hardware in scope Description
audio Sound card, headphone jacks, etc basic functionality tests
benchmarks CPUs, GPUs, Disks, Network assorted benchmarks
bluetooth Bluetooth hardware basic functionality tests
camera video input devices, webcams basic functionality tests
cpu CPU basic cpu features
disk Hard drives and SSD basic functionality and capacity tests
esata eSATA-connected disks
expresscard Express cards
fingerprint Fingerprint scanners
firewire Firewire-connected disks
floppy Floppy disks
graphics Integrated and discrete GPUSs
input Mouse, touchpad and touchscreen
keys Special hardware keys
led Indicator LEDs
mediacard Memory card readers (SD, uSD, xD)
memory RAM
monitor CRT and LCD monitors
networking Ethernet, WiFI and modem
optical optical drives (CDs, DVDs)
peripheral external printer and modem tests
stress entire machine extended stress testing

3.2.2 Software Jobs

Category Name Software in scope
codecs software audio codecs
daemons essential system daemons
install apt-get and oem-config
panel_clock_test date and time display and control
panel_reboot reboot control
piglit various piglit tests (graphics)
rendercheck various rendercheck tests (graphics)
server-services typical server services

3.2.3 Power management jobs

Category Name Description
hibernate whole-system suspend-to-disk
suspend whole-system suspend-to-ram
power-management fine-grained ACPI tests

12 Chapter 3. Table of contents



JobBox Documentation, Release 0.1

3.2.4 Misc jobs

Category Name Description
info hardware information logs
local local jobs (checkbox legacy)
miscellanea other assorted jobs
resource software and hardware probes that enable specific tests
smoke smoke tests for checkbox job management

3.3 Glossary

3.4 ChangeLog

Note: This changelog contains only a summary of changes. For a more accurate accounting of development history
please inspect the source history directly.

3.4.1 PlainBox 0.1 (unreleased)

• Initial release

3.3. Glossary 13



JobBox Documentation, Release 0.1

14 Chapter 3. Table of contents



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

15


